Silda Chandrasekhar College

Teaching Plan for the Academic Session 2023-24

Department: Mathematics

Name of the teacher: Dr. Nirmal Kumar Mandal.

Stream: BSc (Hons)

Teaching plan for 1 st semester students							
	Commencement of class: 1 st September '24						
		Clos	ing of class: 4	th February '24			
Syllabus al	lotted	-	Paper – MJ1	T: Unit – 1, 2, 3			
Month	Expected	Paper	Number of	Topics to be covered			
	number	/Unit	Lectures				
	of classes						
September	18	MJ1T	2	Hyperbolic Function			
		Unit –	2	Higher order derivatives			
		1	3	Leibnitz rule and its applications			
			3	Concavity and Convexity & Point of			
				inflexion.			
			2	Curvature			
			3	Envelopes			
			3	Asymptotes			
October	14	Unit 1	3	Curve Tracing			
		Unit 2	3	Reduction Formula			
			2	Length of a curve			
			2	Area under a curve			
			2	Area of surface of revolution			
			2	Volume of surface of revolution			
November	9	Unit 3	2	Reflection properties of conic			
			3	Rotation of axes and second degree			
				equations			
			4	Classification of conics			
December	20	Unit 3	6	Polar equation of conics			
			3	Spheres			
			4	Cylindrical surfaces			
			4	Central conicoids			
			3	Paraboloids			
January	21	Unit 3	6	Plane sections of conicoids			
			6	Generating lines			
			6	Classification of quadrics			
			3	Ellipsoid			
February	2		2	Revision			

Teaching plan for 3 rd semester students						
		Comm	encement o	f class: 13 th October '23		
		Cle	osing of cla	ss: 28 th January '24		
Syllabus al	lotted		Paper – C6T: Group Theory – I			
			Paper – C	Paper – C7T: Numerical Methods		
			C	P7: -Lab		
Month	Expected	Paper	Number	Topics to be covered		
	number		of			
	of classes		Lectures			
October	3	C6T	3	Symmetries of a square, dihedral groups,		
23		Unit 1		permutation groups and quaternion groups		
November	9	Unit 2	4	Subgroups, centralizer, normalizer, center of a		
23				group, product of two subgroups.		
			5	Cyclic groups		
December 23	18	Unit 3	4	Cosets, Lagrange's theorem, Fermat's Little theorem.		
		Unit 4	5	Direct product of a finite number of groups,		
				normal subgroups, factor groups, Cauchy's		
		I Init 5	0	Group homomorphisms and isomorphisms		
Tommoney	20		9	Algorithms, Convergence, Errores relative, sheelute		
January	20		1	Round off Truncation		
24		Unit I	4	Transcendental and a schemenial constitues		
		Umit	4	Bisaction method Newton's method secont		
		2		method Regula-falsi method fixed point		
				iteration Newton-Raphson method Rate of		
				convergence of these methods.		
		Unit	3	System of linear algebraic equations: Gaussian		
		3	U U	elimination and Gauss Jordan methods. Gauss		
		C		Jacobi method, Gauss Seidel method and their		
				convergence analysis. LU decomposition		
		Unit	3	Interpolation: Lagrange and Newton's		
		4		methods. Error bounds.		
				Numerical differentiation: Methods based on		
				interpolations, methods based on finitedifferences.		
		Unit	3	Numerical Integration:		
		5		The algebraic eigen value problem: Power method.		
				Approximation: Least square polynomial		
		T T •/		approximation.		
		Unit	2	Ordinary differential equations:		
		0	4	Numerical Drastical slass		
			4	Numerical Practical class		

Teaching plan for 5 th semester students				
	Commencement of class: 18 th September '23			
		Closing of	class: 7 th Ja	anuary '24
Syllabus al	lotted		Paper-C12T: Group Theory II	
•			DSE-2: Pro	bability & Statistics
Month	Expected	Paper	Number	Topics to be covered
	number of		of	

	classes		Lectures	
September	10	C12T	2	Automorphism, automorphism
		Unit 1		groups, Characteristic subgroups,
				Commutator subgroup.
		Unit 2	3	External direct products, internal
				direct products, Fundamental
				theorem of finite abelian groups.
		Unit 3	3	Group actions, stabilizers and
				kernels, Generalized Cayley's
		T T 1 / 4		theorem. Index theorem.
		Unit 4	2	Groups acting on themselves by
				conjugation, class equation and
				consequences, conjugacy in S _n , p-
October	1	Unit 4	1	groups, Sylow's theorems and consequences
October	4	Unit 4	4	Cauchy's theorem Simplicity of A
				for $n \ge 5$ non-simplicity tests
November	10	DSE2T	4	Sample space probability axioms
23	10	Unit 1		real random variables, probability
		Probability		mass/density functions.
		and		mathematical expectation, moments,
		Statistics		moment generating function,
				characteristic function, distribution
				function.
		Unit 2	6	Joint probability density functions,
				marginal and conditional
				distributions, expectation of function
				of two random variables, conditional
				expectations, independent random
				variables, bivariate normal
				distribution, correlation coefficient,
				joint moment generating function
				regression for two variables
December	22	Unit 3	10	Chebyshey's inequality statement
23		One 5	10	and interpretation of (weak) law of
				large numbers and strong law of
				large numbers. Central limit theorem
				for independent and identically
				distributed random variables with
				finite variance, Markov chains,
				Chapman-Kolmogorov equations,
				classification of states.
		Unit 4	12	Random Samples, Sampling
				Distributions, Estimation of
				parameters, Testing of hypothesis.
January 24	5			Revision

	Teaching plan for 2 nd semester students				
		Commen	ce of class:	11 th March '24	
Syllabus	allotted		Paper – M	1J 2T: Unit 1, 2	
Month	Expected	Paper	Number	Topics to be covered	
	number of	_	of		
	classes		Lectures		
March	14	MJ2 T	8	Complex numbers	
			6	Theory of equations	
April	18		5	Theory of equations	
			5	Inequalities	
			5	Relation	
			3	Mappings	
April	18				
May	25			Integers	
June	22			Division algorithm	
				Congruence relation	

	Teaching plan for 4 th semester students					
		Co	ommence of	class: 1 st March '24		
Syllabus a	Syllabus allotted Paper -			9T: Multivariate Calculus		
			C	10T: Ring Theory & Linear Algebra		
Month	Expected	Paper	Number	Topics to be covered		
	number		of			
	of classes		Lectures			
March	25	C9T	7	Functions of several variables, limit, and		
		Unit 1		Continuity of functions of two or more variables		
				differentiability sufficient condition for		
				differentiability Chain rule for one and two		
				independent parameters directional derivatives		
				the gradient maximal and normal property of		
				the gradient tangent planes. Extrema of		
				functions of two variables, method of Lagrange		
				multipliers, constrained optimization problems		
		Unit 2	7	Double integration over rectangular region.		
				double integration over non-rectangular region,		
				Double integrals in polar co-ordinates, Triple		
				integrals, triple integral over aparallelepiped and		
				solid regions. Volume by triple integrals,		
				cylindrical and spherical co- ordinates. Change of		
				variables in double integrals and triple integrals.		
		Unit 3	7	Definition of vector field, divergence and curl.		
				Line integrals, applications of line integrals: mass		
				and work. Fundamental theorem for lineintegrals,		
				conservative vector fields, independence of path.		
		Unit 4	4	Green's theorem, surface integrals, integrals over		
				parametrically defined surfaces.		
April	18	Unit 4	4	Stoke's theorem, The Divergence theorem.		

		C10T: Unit 1	6	Definition and examples of rings, properties of rings, subrings, integral domains and fields, characteristic of a ring. Ideal, ideal generated by a subset of a ring, factor rings, operations on ideals prime and maximal ideals
		Unit 2	6	Ring homomorphisms, properties of ring homomorphisms. Isomorphism theorems I, II and III, field of quotients.
		Unit 3	6	Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces.
May	25	Unit 4	25	Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations. Isomorphisms. Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.
June	22	C9T C10T	11	Revision

	Teaching plan for 6 th semester students						
	Commencement of class: 1st February '24						
		Closing da	ay of class:	18 th June '24			
Syllabus a	llotted		Paper - C	14T: Ring Theory & Linear Algebra II			
			DSE-3: N	lumber Theory			
			DSE-4: M	Iathematics Modeling			
Month	Expected	Paper	Number	Topics to be covered			
	number of		of				
	classes		Lectures				
February	23	C14T	7	Polynomial rings over commutative			
24		Unit 1		rings, division algorithm and			
				consequences, principal ideal domains,			
				factorization of polynomials,			
				reducibility tests, irreducibility tests,			
				Eisenstein criterion, and unique			
				factorization in Z [x]. Divisibility in			
				integral domains, irreducible, primes,			
				unique factorization domains,			
				Euclidean domains.			
		Unit 2	6	Dual spaces, dual basis, double dual,			
				transpose of a linear transformation			
				and its matrix in the dual basis,			
				annihilators. Eigen spaces of a linear			
				operator, diagonalizability, invariant			
				subspaces and Cayley-Hamilton			
				theorem, the minimal polynomial for a			
				linear operator, canonical forms.			

March	19	Unit 3 DSE3T	6 19	Inner product spaces and norms, Gram-Schmidt orthogonalisation process, orthogonal complements, Bessel's inequality, the adjoint of a linear operator. Least squares approximation, minimal solutions to systems of linear equations. Normal and self-adjoint operators. Orthogonal projections and Spectral theorem. Linear diophantine equation, prime
				number theorem, Goldbach conjecture, linearcongruences, complete set of residues. Chinese remainder theorem, Fermat's little theorem, Wilson's theorem.
April	18	Unit 2	18	Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of the Dirichlet product, the Mobius Inversion formula, the greatest integer function, Euler's phi-function, Euler's theorem, reduced set of residues, some properties of Euler's phi-function.
May	24	Unit 3	24	Order of an integer modulo n, primitive roots for primes, composite numbers having primitive roots, Euler's criterion, the Legendre symbol and its properties, quadratic reciprocity, quadratic congruences with composite moduli. Public key encryption, RSAencryption and decryption, the equation $x2 + y2 = z2$, Fermat's Last theorem.
June	13	DSE4T Unit 1	6	Power series solution of Bessel's equation and Legendre's equation, Laplace transform and inverse transform, application to initial value problem up to second order.
		Unit 2	7	Monte Carlo simulation modelling: simulating deterministic behavior (area under a curve, volume under a surface), generating random numbers: middle square method, linear congruence, queuing models: harbor system, morning rush hour, Overview of optimization modelling. Linear programming model: geometric

		solution algebraic solution, simplex method, sensitivity analysis

Name of the teacher: Dr. Sumanta Banerjee

Stream: B.Sc. (Hons)

Paper code: - SEC 1: MATLAB-1, CC5, SEC1: Logic and Sets, CC 11.

	Teaching plan for 1 st semester students						
Syllabus allotted: SEC 1: MATLAB-1 (Entire Paper)			Paper –SEC 1: MATLAB-1				
Month	Expected number of classes	Paper	Number of Classes	Topics to be covered			
September	14	SEC 1	14	 MATLAB interface, data types. Variables, Flow control statements. Arrays: creating, indexing, operations. Finding the sum, product, max, min of a list of number in an array, in a sub-array without library function. Matrix creating, indexing, operations. Finding a sub-matrix of the given matrix. 			
October	10	SEC 1	10	 Find the column sum, product, max, min of the given matrix without library function. Find the row sum, product, max, min of the given matrix without library function. Mathematical library functions, user-defined function: anonymous function. 			
November	08	SEC 1	08	 Define any transcendental function and then find and show the table of its functional values. Plotting of two-dimensional functions: Graph plotting, Graph 			

-				
				formatting (title, axis, line styles,
				colors, etc.).
December	14	SEC 1	14	1. Plotting of graphs of various
				functions such as Exponential
				function, Trigonometric function,
				Logarithmic function, Algebraic
				function.
				2. Plotting the graphs of polynomial
				of degree 4 and 5, the derivative
				graph, the second derivative
				graph and comparing them.
January	16	SEC 1	16	1. Graph plotting: multiple plots,
				polar plots.
				2. Sketching parametric curves
				(such as trochoid, cycloid,
				epicycloids, hypocycloid).
				3. Tracing of conics in cartesian
				coordinates/ polar coordinates.
				4. 3D plotting (line, surface, mesh,
				and contour) of three-
				dimensional functions.
February	06	SEC 1	06	1. Sketching ellipsoid, hyperboloid
				of one and two sheets, elliptic
				cone, elliptic, paraboloid, and
				hyperbolic paraboloid using
				cartesian coordinates.

	Teaching plan for 3 rd semester students					
Syllabus allotted: CC5 (Units 1,2, and 4) SEC1 (Entire Paper)		Papers-C	C5, SEC1: Logic and Sets			
Month	Expected number of classes	Paper	Number of Lectures	Topics to be covered		
October	04	CC 5	02	1. Limits of functions, sequential criterion for limits, divergence criteria.		
		SEC 1	02	 propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions. 		

November 10	10	CC 5	07	 Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity and discontinuity. Algebra of continuous functions. Intermediate value theorem, location of roots theorem, preservation of intervals theorem.
		SEC 1	03	 Converse, contra positive and inverse propositions an Precedence of logical operators.
December	17	CC 5	12	 Uniform continuity, non-uniform continuity criteria, uniform continuity theorem. Differentiability of a function at a point and in an interval. Algebra of differentiable functions. Relative extrema. Rolle's theorem. Mean value theorem, Darboux's theorem. Applications of mean value theorem.
		SEC 1	05	 Propositional equivalence: Logical equivalences. Predicates and quantifiers. Sets, subsets, set operations and the laws of set theory and Venn diagrams. Examples of finite and infinite sets. Finite sets and counting principle. Empty set, properties of empty set. Standard set operations. Classes of sets. Power set of a set.
January	18	CC 5	13	 Metric spaces: Definition and examples. Open and closed balls, neighbourhood,open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces. Dense sets, separable spaces.
		SEC 1	05	 Difference and Symmetric difference of two sets. Generalized union and intersections. Relation, composition of relations,

	types of relations,partitions, Equivalence Relations, Partial
	ordering relations.

	r	Feaching J	plan for 5 th s	semester students
Syllabus all Paper)	otted: CC 11	(Entire	Paper –C	C 11
Month	Expected number of classes	Paper	Number of Lectures	Topics to be covered
September	07	CC 11	07	 Partial differential equations – Basic concepts and definitions. First- order equations: classification. Method of characteristics for obtaining general solution of quasi linear equations.
October	09	CC 11	09	 Canonical forms of first-order linear equations. Method of separation of variables for solving first order partial differential equations. Classification of second order linear equations as hyperbolic, parabolic, or elliptic. Reduction of second order linear equations to canonical forms.
November	09	CC 11	09	 Heat equation, wave equation and Laplace equation. The Cauchy problem, Cauchy problem of an infinite string. Initial boundary value problems. Semi- infinite string with a fixed end, semi-infinite string with a free end. Method of separation of variables, solving the vibrating string problem.
December	16	CC 11	16	 Solving the heat conduction problem. Central force. Constrained motion, varying mass, tangent and normal components of acceleration.
January	06	CC 11	06	1. Planetary motion, Kepler's second law.

Paper code: - SEC 2: MATLAB-2, CC 8, SEC2: Graph Theory, CC 13.

	Teaching plan for 2 nd semester students					
Syllabus alle MATLAB-2	otted: SEC 2: 2 (Entire Pape	er)	Paper –SEC 2: MATLAB-2			
Month	Expected number of classes	Paper	Number of Classes	Topics to be covered		
March	10	SEC 2	10	 7. Introduction to M-file: scripts and function. 8. Flow control statements. 9. Standard arrays library functions. 10. Standard matrix library functions. 11. Find the sum, product, max, min, sort of a list of number in an array, in a sub-array using library function. 		
April	17	SEC 2	17	 Find the column sum, product, max, min of the given matrix using library function. Find the row sum, product, max, min of the given matrix using library function. User-defined function: primary function, sub-function, function of functions, library functions. Importing and Exporting data, read spread sheet data, write spread sheet data, MAT-file. Fitting a curve for given data. Plotting of given data: Graph plotting, multiple plots, matrix plots, polar plots, 3D plotting (line, surface, mesh, and contour) of three-dimensional data. 		
May	20	SEC 2	20	 Obtaining surface of revolution of curves. Conversion of one number system to another number system among decimal, binary, octal, hexadecimal. Solution of a square, under 		

				 determined and over determined system of linear equation. 6. Different problems for root, eigenvalues and eigenvectors of the matrix. 7. Plotting of recursive sequences.
June	19	SEC 2	19	 Study the convergence of sequences through plotting. Verify Bolzano-Weierstrass theorem through plotting of sequences and hence identify convergent subsequences from the plot. Studytheconvergence/divergence of infinite series by plotting their sequences of partial sum. Cauchy's root test by plotting nth roots. Ratio test by plotting the ratio of nth and (n+1)-th term.

	Teaching plan for 4 th semester students					
Syllabus allotted: CC 8 (Units 1,2, 3, and 5) SEC2 (Entire Paper)		Papers-C	C 8, SEC 2: Graph Theory			
Month	Expected number of classes	Paper	Number of Lectures	Topics to be covered		
March	16	CC 8	11	 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem. Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums, equivalence of two definitions. Riemann integrability of monotone and continuous functions. Properties of the Riemann integral; definition and integrability of 		

				piecewise continuous and
				monotone functions.
		SEC 2	05	2. Definition, examples and basic
				properties of graphs.
				3. Pseudo graphs, complete graphs,
				bipartite graphs.
April	18	CC 8	12	4. Intermediate Value theorem for
				Integrals; Fundamental theorem of
				Integral Calculus.
				5. Improper integrals. Convergence
				of Beta and Gamma functions.
				6. Pointwise and uniform
				convergence of sequence of
				functions.
		SEC 2	06	2 Lagrandian of any h
		SEC 2	00	5. Isomorphism of graphs.
				4. Eulerian circuits, Eulerian graph,
				5 Hamiltonian cycles theorems
				5. Hammoman eyeles, morents.
May	21	CC 8	14	5. Theorems on continuity,
5				derivability and integrability of the
				limit function of a sequence of
				functions.
				6. Series of functions.
				7. Theorems on the continuity and
				derivability of the sum function of
				a series of functions.
				8. Cauchy criterion for uniform
				convergence.
		SEC 2	07	5. Representation of a graph by
				matrix, the adjacency matrix,
				incidence matrix.
				6. Weighted graph.
				7. Tree and their properties, spanning
т	20		1.4	tree.
June	20	CC 8	14	5. Weierstrass M-Test.
				6. Power series, radius of
				7 Cauchy Hadamard theorem
				8 Differentiation and integration of
				nower series: Abel's theorem
				9 Weierstrass approximation
				theorem
		SEC 2	06	4 Travelling salesman's problem
				shortest nath
				5. Dijkstra's algorithm
				6. Warshall algorithm

	Teaching plan for 6 th semester students						
Syllabus al Paper)	lotted: CC 13	(Entire	Paper –C	C 13			
Month	Expected number of classes	Paper	Number of Lectures	Topics to be covered			
February	12	CC 13	12	 Metric spaces: sequences in metric spaces, Cauchy sequences. Complete metric spaces. Cantor's theorem. Continuous mappings, sequential criterion and other characterizations of continuity. Uniform continuity 			
March	18	CC 13	18	 Connectedness, connected subsets of R. Compactness: Sequential compactness, Heine-Borel property. Totally bounded spaces, finite intersection property, and continuous functions on compact sets. Homeomorphism, contraction mappings. Banach fixed point theorem and its application to ordinary differential equation. 			
April	19	CC 13	19	 4. Complex numbers, Limits, limits involving the point at infinity, continuity. 5. Properties of complex numbers, regions in the complex plane, functions of complex variable, mappings. 6. Derivatives, differentiation formulas, Cauchy-Riemann equations, sufficient conditions for differentiability. 7. Analytic functions, examples of analytic functions 			
May	20	CC 13	20	 Exponential function, logarithmic function, trigonometric function, Derivatives of functions, and definite integrals of functions. Contours, Contour integrals and its examples, upper bounds for moduli 			

				of contour integrals. 7. Cauchy- Goursat theorem, Cauchy integral formula. 8. Liouville's theorem and the fundamental theorem of algebra.
June	12	CC 13	12	 Convergence of sequences and series, Taylor series and its examples. Laurent series and its examples, Absolute and uniform convergence of power series.

Name of the teacher: Atindra Narayan Sahu

Stream: B.Sc. (Hons)

Paper code: - MJ-1, CC 5, DSE-1:Linear Programming.

	Teaching plan for 1 st semester students					
Syllabus allotted: MJ-1 (UNIT-4)		Paper –MJ	-1			
Month	Expected number of classes	Paper	Number of Classes	Topics to be covered		
September	14	MJ-1	14	General, particular, explicit, implicit and singular solutions of a differential equation		
October	10	MJ-1	10	First order but not first degree differential equation.		
November	08	MJ-1	07	Exact differential equations and integrating factors.		
December	14	MJ-1	16	Equations reducible to the form of exact differential equations.		
January	16	MJ-1	18	Linear equation, Bernoulli equation.		
February	06	MJ 1	03	Special integrating factors and transformations		

	Teaching plan for 3 rd semester students				
Syllabus allotted: CC5 (Unit 3)		J nit 3)	Papers–C	C5	
Month	Expected number of classes	Paper	Number of Lectures	Topics to be covered	
October	04	CC 5	04	6. Cauchy's mean value theorem.7. Taylor's theorem with Lagrange's form of remainder.	
November	07	CC 5	07	 Taylor's theorem with Cauchy's form of remainder. Application of Taylor's theorem to convex functions. 	
December	16	CC 5	16	 Relative extrema. Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions. 	
January	15	CC 5	15	10. Maclaurin's series expansions of different functions.11. Application of Taylor's theorem to inequalities.	

Teaching plan for 5 th semester students					
Syllabus allotted: DSE-1 (Entire Paper)		Paper –DSE-1Linear Programming			
Month	Expected number of classes	Paper	Number of Lectures	Topics to be covered	
September	08	DSE-1	08	 8. Introduction to linear programming problem. 9. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness. 	
October	10	DSE-1	10	 10. The simplex algorithm, simplex method in tableau format. 11. Introduction to artificial variables, two-phase method. Big-M method and their comparison. 	
November	12	DSE-1	12	 Buality, formulation of the dual problem, primal-dual relationships, Transportation problem and its 	

				mathematical formulation, northwest-corner method, least cost method and Vogel approximation method for determination of starting basic solution.
December	20	DSE-1	20	 9. Algorithm for solving transportation problem, assignment problem and its mathematical formulation, Hungarian method for solving assignment problem. 10. Game theory: formulation of two person zero sum games, solving two person zero sum games, games with mixed strategies.
January	07	DSE-1	07	 graphical solution procedure, linearprogramming solution of games.

Paper code: - MJ-2, CC 10, CC 14.

Teaching plan for 2 nd semester students					
Syllabus allotted: MJ-2 (UNITS 3 and 4)		Paper –MJ-2			
Month	Expected number of classes	Paper	Number of Classes	Topics to be covered	
March	09	MJ-2	09	 12. Systems of linear equations. 13. Row reduction and echelon forms, vector equations. 14. The matrix equation Ax=b. 	
April	14	MJ-2	14	 10. Solution sets of linear systems, applications of linear systems, linear independence. 11. Definition of vector space, introduction to linear transformations, matrix of a linear transformation. 	
May	14	MJ-2	14	 8. Inverse of a matrix, characterizations of invertible matrices. Subspaces of a vector space, dimension of subspaces. 9. Rank of a matrix. 	

June	15	MJ-2	15	8. Eigen values, eigen vectors and characteristic equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix.

Teaching plan for 4 th semester students					
Syllabus allotted: CC10 (Unit3)		Papers-CC10			
Month	Expected number of classes	Paper	Number of Lectures	Topics to be covered	
March	15	CC 10	15	 Vector spaces, subspaces. Algebra of subspaces. 	
April	14	CC 10	14	 Quotient spaces. Linear combination of vectors, linear span. 	
May	15	CC 10	15	11. Linear independence, basis and dimension.	
June	16	CC 10	16	12. Dimension of subspaces.	

Teaching plan for 6 th semester students					
Syllabus allotted: CC 14 (Unit 2)		Paper –CC 14			
Month	Expected number of classes	Paper	Number of Lectures	Topics to be covered	
February	10	CC 14	10	10. Dual spaces, dual basis, double dual.	
March	15	CC 14	15	12. Transpose of a linear transformation and its matrix in the dual basis.13. Annihilators.	

April	14	CC 14	14	10. Eigen spaces of a linear operator,
				diagonalizability.
				11. Invariant subspaces.
May	14	CC 14	14	11. Cayley-Hamilton theorem.
				12. The minimal polynomial for a
				linear operator.
June	10	CC 14	10	6. Canonical forms.